
ARMY RESEARCH LABORATORY

Early Results From the Porting of
the Computational Fluid Dynamics

Code, F3D, to the Silicon
Graphics Power Challenge

by Daniel M. Pressel

ARL-TR-1562 December 1997

19980526 090

tec QUALITY INSPECTED,

Approved for public release; distribution is unlimited.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1562 December 1997

Early Results From the Porting of the
Computational Fluid Dynamics Code, F3D,
to the Silicon Graphics Power Challenge

Daniel M. Pressel
Corporate Information and Computing Center

Approved for public release; distribution is unlimited.

Abstract

This report briefly discusses some of the issues involved in porting a computationally
intensive code from a Cray vector supercomputer to the Silicon Graphics (SGI) Power Challenge
(75-MHz Mips R8000-based shared memory Symmetric Multiprocessor). Additionally, some
evidence is presented to indicate that similar results should be expected when taking this code
to comparable boxes from other vendors (e.g., Digital Equipment, Convex, HP, or SUN).
Performance results are also discussed. This discussion deals with both the highly successful
nature of these results in terms of absolute levels of performance and the even more impressive
results in terms of cost-effective performance. This report concludes with some thoughts on the
future of this project.

11

Acknowledgments

The author wishes to express his gratitude to Mark Williams, formerly of the U.S. Army

Research Laboratory (ARL), and Jim McElvaney of Silicon Graphics Inc. (SGI) for their assistance

in providing the resources necessary to carry out this project. Additionally, he wishes to thank Karen

Heavey, Jubaraj Sahu, James Collins, Walter Sturek, and Charles Nietubicz for their contributions

to the success of this project. Finally, the author wishes to express his gratitude for the patience and

support exhibited by his colleagues and the users of the computer resources at ARL, U.S. Army

Chemical-Biological Defense Command (CBDCOM), Air Force Aeronautical Systems Center,

Naval Command, Control and Ocean Surveillance Center, and elsewhere, while he carried out this

study and prior studies that made this work possible.

This work was made possible through a grant of computer time by the Department of Defense

(DOD) High-Performance Computing Modernization Program. Additionally, it was funded as part

of the Common High-Performance Computing Software Support Initiative administered by the DOD

High-Performance Computing Modernization Program.

m

INTENTIONALLY LEFT BLANK.

IV

Table of Contents

Page

Acknowledgments „ iii

List of Figures vii

1. Overview 1

2. Source of the Problem 3

3. Solution 5

4. Future Plans 11

5. Conclusions 14

Glossary 17

Distribution List 19

Report Documentation Page 23

INTENTIONALLY LEFT BLANK.

VI

List of Figures

Figure Page

1. The Performance of the 1 -Million Grid Point KTA Test Case on One Processor
of a Cray C90 and a 12-Processor SGI Power Challenge (75 MHz) 9

2. The Performance of the 3-Million Grid Point Benchmark Test Case on One
Processor of a Cray C90 and a 12-Processor SGI Power Challenge (75 MHz).... 10

3. Computed Pressure Contours at 1,800 Time Steps 12

4. Circumferential Pressure Plots at 1,800 Time Steps 13

Vll

INTENTIONALLY LEFT BLANK.

vm

1. Overview

This project began as a result of an effort to run a large-memory (1.5 GB), computationally

intensive job on a Silicon Graphics (SGI) Power Challenge. The code selected for this effort was

an implicit 3-D computational fluid dynamics solver known as F3D.* The test case required a bit

under 9 CPU1- minutes to run on a Cray C90 when using one processor (a bit over 10 CPU minutes

if run as an out-of-core solver on the same hardware, when using the solid-state disk to hold the data

not currently resident in the main memory).** Attempts to run the in-core solver version of F3D on

an SGI Power Challenge (75 MHz using just one processor), required over 5 hours of CPU time.

The intent of this project was to determine the reasons and, if possible, the potential solutions for this

poor level of performance. The most troubling of these causes was the possibility that the SGI

Power Challenge and, by inference, other RISC-based shared memory SMPs were simply incapable

of efficiently ninning large, computationally intensive problems.

Upon further investigation, several conclusions were reached.

(1) There were no fundamental flaws in the design of the SGI Power Challenge that would make

it impossible to port this code to this machine.

(2) There was no inherent reason to believe that the algorithms used in this program were poorly

suited to run on this machine. Quite the contrary, they looked most promising, both from

the standpoint of serial efficiency and for their potential to be parallelized using loop-level

parallelism (which seems to be a natural programming model for this class of machines).

Sahu, J., and J. L. Steger. "Numerical Simulation of Transonic Flows." International Journal for Numerical
Methods in Fluids, vol. 10, no. 8, pp. 855-873,1990.

Note: All items in BOLD type are defined in the Glossary.

The test case only mvolved computing 10 time steps. Production runs frequently involve processing hundreds or even
thousand of time steps and generally take many hours to finish.

1

(3) As currently written, the program showed almost no locality of reference, which easily

explained why any architecture based on a hierarchical memory system would have trouble

running this code. Fortunately, there was strong evidence that implementation-level tuning

would be sufficient to substantially improve upon this situation.

(4) Many of the optimizations performed in an effort to obtain high levels of vectorization of

this code were incompatible with the efficient operation of the code on the SGI Power

Challenge.

(5) The compilers on most, if not all, of today's RISC-based architectures were incapable of

producing efficient code, even after the problems (numbers 3-4 discussed previously) were

largely eliminated. While the traditional approach to this problem would have been to use

a combination of library routines and custom written assembly code, it was found that the

judicious use of a highly aggressive programming style could achieve the same results

without sacrificing portability. This effort was strongly based on earlier research done by

the author.*

As a result of these efforts (numbers 3-5 previously mentioned), the tuned code is able to run

the specified problem (correctly) in just under 30 minutes when using one processor of the SGI

Power Challenge (a bit over 4 of the 30 minutes is required for startup and termination costs, mostly

associated with the use of formatted I/O, the comparable number of the Cray C90 is about 100 s).

When the run is parallelized across 12 processors, the run time drops to 6 1/2 minutes (roughly

3 1/2 minutes for startup and termination costs). Additionally, tests on an earlier version of this code

indicate that there are substantial additional gains in performance from using more than 12

processors. (Unfortunately, the current configurations of the Power Challenge Array at the U.S.

Army Research Laboratory (ARL) makes it difficult to repeat these measurements on the latest

version of the code.)

* Pressel, D. M. Unpublished Research. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD.

2

Since the specified problem involves running just 10 time-steps, the author feels that the best

comparisons are made with the startup and termination costs removed. Based on this practice, the

serial code is now running 11 1/2 times faster than the original code. The parallelized code, when

using 12 processors, is running 100 times faster than the original code. Additionally, the parallelized

code using 12 processors is running more than two times faster than the original code ran on 1

processor of a Cray C90 (prior experience indicates that using 18 processors would almost certainly

increase this number to a factor of 3). Note that these results were achieved without in any way

changing the convergence properties of this code (e.g., through the use of an explicit algorithm,

domain decomposition techniques or the introduction of other types of approximations as a way to

increase the parallelizability of the code). This is very important, since it means that the code will

require the same number of time steps to converge, thereby establishing the validity of these

comparisons.

2. Source of the Problem

Many vendors, including SGI, have produced RISC-based SMPs with some variant of shared

memory/virtual shared memory. Invariably, they claim/seem to be claiming that since people have

been writing programs for shared memory environments for years, it should be trivial to port their

programs to the new machines.*1**^ Also, invariably, things are far from being this simple. So, what

are the issues? The following lists some of the more important issues.

(1) The "simple porting" theory is based on the premise that the PRAM model, which is taught

in some computer science departments, is an accurate representation of the current

generation of machines. The problem with this assumption is that the PRAM model makes

a simplifying assumption of a large, flat memory system. While this might be a reasonable

The Advent of Power Computing. Silicon Graphics Luc, 1994.

Power Learn: Achieving High Performance and Parallelism With Silicon Graphics Power Challenge Systems.
Silicon Graphics Inc., 1995.

Exemplar Architecture. Convex, 1993.

KSR1 Principles of Operation. Kendall Square Research, 1992.

approximation for the memory system of a Cray vector supercomputer or some of the earlier

products from Sequent (and others), in no way is it an adequate representation of the current

generation of machines.

(2) Traditionally, there have been two classes of shared memory SMPs. Unfortunately, for the

following reasons, neither class of machine was used to produce programs that are well

suited for use on systems such as the Power Challenge.

(a) Those made by Sequent and its competitors were composed of processors that were

generally considered to be too slow for use on computationally intensive jobs. As a

result, there are relatively few computationally intensive codes that have been tuned for

these machines, and most of the codes that do exist are for jobs that were difficult to

vectorize.

(b) Those made by Cray Research, and to a lesser extent, its competitors were based on a

large, flat, multibanked memory system, relying on the vector pipelining to hide the

latency of the memory system, while supporting a high level of performance.

Traditionally, codes written for these machines were optimized for peak levels of

performance of a single vector processor, and only rarely was any effort made to use

multiple processors for a single job. Additionally, the theoretical underpinnings of these

machines are dramatically different than that for the current generation of shared

memory SMPs.

(3) Another selling point for the current generation of shared memory SMPs is that they are a

natural extension of the RISC architectures used in the workstations found on the desks of

most scientists and engineers involved in High-Performance Computing. While this

statement is true, experience teaches that only a modest percentage of the programs run on

these workstations have been tuned for them, hi general, it was considered to be easier and

more cost-effective to just buy a faster machine or use a departmental server (e.g., a large

DEC VAX) or a supercomputer from Cray or one of its competitors, than to tune/retune

one's program. As a result, there seems to be little interest in or support for efforts to

determine what programming styles were best suited for use with RISC-based workstations.

So, to summarize the problem, potentially many of the current generation of shared memory

SMPs are powerful enough to compete with traditional vector supercomputers. Additionally, the

claims that these machines are natural extensions to existing machines and should therefore be easy

to port code to is also true; or a least it would be true if there were a significant body of existing

codes that had already been optimized for RISC-based shared memory SMPs with a hierarchical

memory system.*t**tt Unfortunately, few such codes currently exist, and there appears to be little

research in this area.

3. Solution

While it would be tempting to conclude that the solution is to parallelize the code across as many

processors as possible (possibly even using multiple Power Challenges). Based on two observations,

doubts were expressed about this methodology. First, given the unbelievably poor performance of

the code when using one processor of the Power Challenge, it was unlikely that this approach would

be cost-effective. Secondly, since the parallel efficiency of most codes tends to decrease as the

number of processors increases, it was far from clear if this approach would even work. This view

was reinforced by the observation that the current algorithm supported only a limited amount of

parallelism.

Based on this analysis, the author set about the rather tedious job of retuning the code for a

substantially improved level of single processor performance. Early efforts were guided by profiling

reports that indicated that most of the time was spent in only a few routines, and that several of the

The Advent of Power Computing. Silicon Graphics Inc., 1994.

Power Learn: Achieving High Performance and Parallelism With Silicon Graphics Power Challenge Systems.
Silicon Graphics Inc., 1995.

Exemplar Architecture. Convex, 1993.
tt KSR1 Principles of Operation. Kendall Square Research, 1992.

most expensive routines were spending upward of 90% of their time processing cache and TLB

misses (part of the memory management system). Early efforts in this area were aimed at increasing

the use of Stride-1 memory access patterns (accessing array elements in the same order as they are

stored in memory). This was accomplished by changing the order of the indices for many of the

larger arrays. Additionally, limited use was made of large scratch arrays and transposes in an attempt

to isolate code that was accessing memory in other than a Stride-1 pattern in subroutines that could

be easily blocked (another method for increasing the locality of reference).

While these changes were, in principle, trivial to implement, the sheer number of changes

required made this a very time-consuming and painful undertaking. The result of these changes was

to reduce the run time to under 2 hours. Additional analysis showed that a significant number of

scratch arrays stored an entire plane of data at one time. This approach had been adopted as a result

of some of the efforts to maintain the vectorizability of the code. Since that was no longer a concern

for this project, and since the size of these arrays made them poorly suited for use on a computer

with a hierarchical memory system, the decision was made that certain key loops should be modified

so that they processed data a slice at a time, rather than processing an entire plane of data at a time.

It was demonstrated that these changes could be made without fundamentally changing the

algorithm, and the effect was to reduce the size of many of the scratch arrays to the point that they

fit comfortably in the secondary cache.* The result of this set of transformations, as well as some

rather simple transformations designed to reduce the amount of unnecessary data motion associated

with switching between zones, further reduced the run time to under 1 hour and 30 minutes.

While it might have been practical at this point to switch from the serial tuning of the code to

parallelizing the code, it was felt that substantial gains could still be realized by using some

additional techniques.

For some time, it was not clear what the optimal slice size should be. The current implementation uses an adaptive
technique based on the specifics of the computer being used, the problem size, and the number of processors being
used. It should be noted that this is an area of continuing research.

(1) Eliminate unnecessary calculations and/or data motion whose primary purpose seems to be

to maintain the vectorizability of the code. While this technique frequently reduces the

readability of the code, in many cases, it can improve the performance by nearly an

additional factor of 2. (This is based on the metric of primary interest to the end user—the

run time—rather than maximizing the number of floating-point operations per second.)

(2) Perform a variety of fairly standard optimizations (e.g., loop unrolling) in an attempt to

identify additional opportunities for optimizing the code. In many cases, the result was the

identification of new tuning opportunities that few, if any, compilers were likely to find on

their own.

(3) The author has observed that while many modern optimizing compilers for current

RISC-based platforms are capable of performing an interesting array of optimizations, they

tend to give up when the complexity of a loop crosses a certain threshold. The result can be

a very sharp dropoff in the performance of the code that is produced. The problem is that

many of the previously mentioned techniques have the tendency to produce large, but not

necessarily complicated, loops. Unfortunately, the size of these loops will, in general, cause

the optimization routines to give up. As a result, the author has developed a series of

techniques for manual software pipelining C and FORTRAN routines, hi general, these

techniques can produce additional improvements in performance by a factor of 2-5 (or

more). The unfortunate side effect is a dramatic reduction in the readability/maintainability

of the code.* Therefore, it is unwise to use these techniques throughout the code. However,

applying them in a judicious manner, one can still achieve impressive incremental gains in

performance. It should also be noted that while these techniques have been shown to be of

value for virtually all RISC processors, highly aggressive processors, such as the MIPS

R8000 processor used in the Power Challenge, are likely to benefit the most from this step.

Additionally, since this step requires the programmer to have some concept of the

architectural characteristics of the target processor, it is likely that the benefit of using these

A former colleague of the author referred to this technique as Writing Assembly Code masquerading as C or
FORTRAN.

techniques vis-a-vis other processors may not be quite as large. Initial tests conducted on

systems based on the SUN/TI SuperSPARC, HP PA-RISC 7100, and MIPS R4400

processors were all very encouraging (within the limits of the individual system designs).

The net result of all of these transformations was the eventual reduction in the single-processor

run time to just under 30 minutes. It was also noted that almost all of these optimizations were

shown to be beneficial to the parallelized code (using the c$doacross directive to implement loop

level parallelism). By continuing to pay attention to details, 12 processor run times of 6 minutes and

30 seconds (of which 3 minutes and 30 seconds were startup and termination costs) were achieved.

Clearly, if one has the time to spend, applying these techniques to a production code such as F3D,

can be viewed as a major success. Additionally, since none of these techniques required any

knowledge or understanding of the algorithms used in this program, they should be widely

applicable. In fact, many of the more aggressive techniques were originally developed on previous

projects.*

Figures 1 and 2 provide performance results for this work for two different-sized problems.*

These figures compare two different versions of the code running on a Cray C90 vs. the new

RISC-optimized version of the code running on a 75-MHz R8000-based Power Challenge. Several

interesting things to note on these charts are:

(1) One can achieve a modest, but noticeable improvement in performance on the C90 simply

by running everything in-core. Unfortunately, the large memory requirements for that

optimization have discouraged its use.

(2) These charts are based on runs for a limited number of time steps. As such, the reader will

get a fairer view of the relative performance of the code by subtracting the start-up and

termination costs. This process results in what is referred to as the adjusted speed and is a

good estimate of the performance of the code when run for large numbers of time steps.

* Pressel, D. M. Unpublished Research. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD.

* Actually, they are the same problem; just the grid size was changed.

8

o
CO
cc
LU
>

Q
LLI
N

h-
Q.
o
Ü
CO

oc
Q
LU
N
_l
LU
_J
_1
<
CC
<
a.
LU
I
h-
LL
o
LU
Ü

CC o
LL
cc
LU
D_

LU
>
h-
<
CC
<

o
O
LU
I
I-

Q
LU
CC
<

o
Ü

Z
LU
I

<
LU
I
LU
Z
o
z
O

> 3
CO CC

CC
o
LL
H
<

LU
I

LU
Q

"Z o wo
O^

< CO
> LU

IS
cc Z
z O
w 05
5 ^
Q ^ co Q
LL LU
LU N

oE
Q O
O*
bg

H
LU
CO

<

<

o

LO

X

o>
T—

CO

8 £

«<jl

^

Q_

LU
I
H
LL
O

>
LU
I
h-

o
I-

*

Q \
CC \
CD \
*—"" CO \

A
 C

R
A

Y
 C

90

P
E

E
D

 I
S

 A
D

JU
S

T
E

D
 T

O

P
 A

N
D

 T
E

R
M

IN
A

T
IO

N
 C

O
S

!

z
CO
D

CC
LLI
>j

\
\
\
\
\
\
\
\

LL me CC o \

0

U
S

T
E

C

S
T

A
R

 > _i
o
CO

UJ
CC o

\
\

< o
LU 5

1 ■

LU
CC
O
Ü
Z

LL o
1-
D
o

o
en
V)
LU

i , , , , 1

<K1

1 1 1

>

1 , , ,

o o O o
o o o o
00 CD ■* CM

LO

co
z>
w
CC
o
co
co
UJ
ü
O
CC
CL
LL
o
cc
UJ
m

z

*!

3

UnOH Ü3d Sd31S 3WI1 Nl Q33dS

2

z:
O
co
cc
LU
>

Q
LU

O
LU
Ü

CC
O
LL
CC
LU
a.
LU
>

<
CC
<
Q_

O
ü
LU
X

Q
LU
CC
<
Q.

o
o

Q
CO

Ü

Q
<
LU
I

LU

N

W
H

E

U
N
 o

r

S
H
n CO CC

O >7>
O
CO

CC T
F

O
F

W

H
E

Q
LU
N

< LU

1 U) ü
LU
_J
_l

rr < CO
< -* LU
Q_ <d T
LU O f-
I 7 LL
1- DO
LL CC 7

Z O
LU CO

^ LU
>
Q
LU

LU N

Q O
CC

tg
Ü o
13 tu
a. >

UJ i-

I*
O

\
\
\

D
LU *
LU
OL

CO
\

O \
p" h- \

LU
CO

<

St

3

o 3
UJ 3
Ml ^~
ff LU
0) (5

S a

\
\
\
\

Q 3 ° \
iai < a:

O UJ
\

CC 2? \
< \
S Ü to \
I 1 \
Ü z
LU «4 \

\
\ CO 1
\ o"

x <
in \
CM \
C\J \
X Q. \
T- CC \ o Ü \

\
\

1— CO

UJ

CO >
i

Q
III
CC \

CC
a
CO
to

\
\
\ O UJ

1-
co
D

UJ
I
1-

o
O

3
< CO
CO 1-

r <*> o o
UJ o

z
CO

CC
UJ

\
\
\

>-
<
CC
Ü

<

CC
UJ >
O
CO

UJ
CC o

>
o
CO

UJ
tc o
Ü
LL o
t-

\
\

'<< < -
LL 11 z o
o

1 i. 1 ■ III 1 1 1 1 1 1 1

- LO

Q
LU
CO

CO
CC
o
co
CO
LU
Ü
o
cr
Q.
LU
O
CC
LU
HI
5
r>
z

o o
CO

o o
CM

O
O

UnOH U3d Sd31S 3WI1 Nl Q33dS

10

a

s. s

(3) Since the Cray versions of the code are considered to be efficient, the speed in time steps per

hour is the most useful measure of performance. (Normally, this is the only measure of

performance that the user cares about.)

(4) In discussions with other researchers, the author has found it interesting to note that he

seems to be getting roughly twice the per processor performance on the SGI Power

Challenge than what most of the others are reporting for small numbers of processors.*1'**1'1'

For larger numbers of processors, this difference frequently increases to a factor of 3-4.***

(5) It is also important to note that there is no obvious dropoff in performance when one goes

to a larger problem size.

Figures 3 and 4 were prepared by Karen Heavey and Jubaraj Sahu, U.S. Army Research

Laboratory (ARL), as part of the code validation effort. Figure 3 shows the computed pressure

contours obtained at 1,800 time steps using the Power Challenge and C90. Both results are

practically identical. Figure 4 shows the circumferential surface pressure distributions at two

selected longitudinal stations. Again, both Power Challenge and C90 results are virtually the same.

In fact, both computed results, when overlaid, lie on top of each other. These results provide strong

evidence that the tuned code is behaving properly.

4. Future Plans

At the present time, several additional efforts relating to this code are underway. Some of these

are as follows:

Wallcraft, A. J. Private communication. 1997 DOD HPC User's Group Meeting, 1996.
1 Sirbaugh, J. Private communication. 1997 DOD HPC User's Group Meeting, 1996.

Smarr, L. Presentation at 1996 DOD HPC User's Group Meeting, 1996.
n Wallcraft, A. J. Presentation. 1997 DOD HPC User's Group Meeting, 1997.

These comparisons were generally made in terms of MFLOPS/second where the operation count was measured using
the hardware performance monitor for the Cray C90 when running the vector-optimized version of the code. This
seems to be the most objective technique when comparing the performance of dissimilar programs.

11

CRAY C-90

0.3 0.9 1.4 2.0

POWER CHALLENGE

Figure 3. Computed Pressure Contours at 1,800 Time Steps.

(1) Marek Behr, Ph.D., of the Army High-Performance Computer Research Center has been

porting the same code to the Cray T3D and other traditional Distributed Memory

RISC-based MIMD MPPs. Serial optimizations developed for this effort have been

provided to Marek Behr and adapted for use in his work.

12

-0.10

-0.15

X/D = 2.4 X/D = 3.5

Experiment
CRAY C-90

X Power Challenge

0.0 30.0 60.0 90.0 120.0 150.0 180.0

Phi (degrees)

• Experiment
CRAY C-90

x Power Challenge

Cp

-0.20
0.0 30.0 60.0 90.0 120.0 150.0 180.0

Phi (degrees)

X/D = 8.5

Cp

0.10

0.05

0.00

-0.05

-0.10 -

-0.15

• Experiment
CRAY C-90

X Power Challenge

^ ^^^^••••J^

1 1 1 1 1

0.0 30.0 60.0 90.0 120.0 150.0 180.0
Phi(degrees)

Cp

0.10
X/D = 11.5

0.05 • Experiment
CRAY C-90

X Power Challenge

0.00

-0.05

-0.10

i I 1 1 I

0.0 30.0 60.0 90.0 120.0 150.0 180.0
Phi(degrees)

Figure 4. Circumferential Pressure Plots at 1,800 Time Steps.

(2) James Collins, Ph.D., of ARL is currently adding several additional modules to this code,

including an implementation of the CHIMERA technique.

(3) James Collins, Jubaraj Sahu, Ph.D., also of ARL and others are beginning work on a formal

plan to revalidate the tuned code.

13

(4) Through additional investigations, more techniques into ways to improve the performance

of this code when using larger numbers of processors on a shared memory SMP such as the

SGI RIOOOO-based Power Challenge or on a virtual shared memory SMP such as the

Convex Exemplar family of computers. It is also expected that tests will be conducted to

identify, and if necessary, correct any problems that might occur when the problem is scaled

to even larger sizes. Unfortunately, only recently have systems with sufficient memory and

address space to handle problems that are significantly larger than those used in this study

come online. It is expected that results using these systems will be discussed in future

reports.

(5) Some of the routines currently in the F3D code were neither optimized (other than to the

extent necessary to maintain their validity) nor parallelized. While many of these routines

are so fast that there was no need to tune them, a significant percentage of the untuned

routines are computationally intensive, but were not used in processing the benchmark case.

Eventually, it would be desirable if some effort were made to either improve the speed of

these routines or delete them from the standard distribution.

5. Conclusions

It is clear that some computationally intensive codes can be tuned so that a meaningful range of

problem sizes can be run with an acceptable level of performance on the current generation of

RISC-based shared memory SMPs. Having said that, it is also clear that transitioning code to these

machines will be far from the plug and play process many potential users are hoping for.

Additionally, our experience is that when running well-tuned code on the Power Challenge, the

price-to-performance can be favorable.* If other researchers are able to obtain similar results, this

may have beneficial long-term consequences.

* This is based on results reported in this report and list price data supplied by SGI.

14

Now, let us look at the way technology is advancing. High-end RISC processors are getting

significantly faster and are available in both desktop workstations and shared memory SMPs such

as the Power Challenge. Additionaly, memory prices for these machines have dropped to the point

where it is cost-effective to put hundreds of megabytes of memory in a workstation and several

gigabytes of memory in the SMPs. As such, it is reasonable to expect that, as time progresses, it will

be practical to run even larger jobs on the SMPs and that many of the current jobs may actually be

capable of migrating to well-equipped workstations.

It appears as though a major stumbling block to this scenario becoming a reality is the lack of

well-tuned codes for this new class of machines. Therefore, what we need is to identify which codes

are good candidates for transitioning to this new class of machines. Additionally, since it takes time

to carry out this effort, we suggest, in part, basing the selection criteria on the predicted performance

of the next-generation of SMPs. It is our experience that the techniques we used have a substantial

benefit on multiple platforms and should therefore still be of significant value in succeeding

generations of hardware.

15

INTENTIONALLY LEFT BLANK.

16

Glossary

Cache - One way in which high-speed memory is used by modern computer architectures.

Cache and TLB Miss - Caches and TLBs are used to store frequently needed information so that
the processor can avoid accessing main memory, which can take up to 100 times as long. A miss
occurs when the required information is not already present in the cache or the TLB (as
appropriate) and must first be fetched from main memory.

CPU - Central processing unit.

CPU Time - The total amount of time that the CPU actually spends executing a job. Note: it does
not matter if one uses 10 CPUs for 1 minute, or 1 CPU for 10 minutes. In either case, one has
used 10 CPU minutes.

Locality of Reference - This refers to a property exhibited by many programs, where either (1) the
same memory location is accessed repeatedly over a short period of time, and/or (2) a continuous
range of memory locations is accessed (usually in order) over a period of time.

MIMD - Multiple instruction/multiple data. This refers to a class of parallel-processor-based
computers.

MPP - Massively parallel processor. Generally refers to computers composed of 100 or more
processors.

PRAM - Parallel Random Access Machine. A commonly used model for the study of parallel
computer architectures and programs.

RISC - Reduced instruction set computer.

SMP - Symmetric multiprocessor.

TLB - Translation lookaside buffer (part of the memory management system).

Vectorizability - The potential for a program to run effectively on a vector processor such as a
Cray C90.

Vectorization - The creation of an executable program that will take advantage of a vector
processor's hardware.

Wall Clock Time - the total elapsed time between when a job starts to run and when it finishes.
This is usually the only number the user will care about, but may vary over a wide range when
a system is being shared with other jobs.

17

INTENTIONALLY LEFT BLANK.

18

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE0944
FT BELVOIR VA 22060-6218

HQDA
DAMOFDQ
DENNIS SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

DPTY ASSIST SCY FOR R&T
SARDTT F MILTON
RM 3EA79 THE PENTAGON
WASHINGTON DC 20310-0103

OSD
OUSD(A&T)/ODDDR&E(R)
JLUPO
THEPENTAGON
WASHINGTON DC 20301-7100

1 GPS JOINT PROG OFC DIR
COL J CLAY
2435 VELA WAY STE 1613
LOS ANGELES AFB CA 90245-5500

1 ELECTRONIC SYS DIV DIR
CECOM RDEC
JNIEMELA
FT MONMOUTH NJ 07703

3 DARPA
L STOTTS
JPENNELLA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MDN A MAT DON ENGEN
THAYERHALL
WEST POINT NY 10996-1786

CECOM
SP & TRRSTRL COMMCTN DIV
AMSEL RD ST MC M
H SOICHER
FT MONMOUTH NJ 07703-5203

DIRECTOR
US ARMY RESEARCH LAB
AMSRLCSALTP
2800 POWDER MILL RD
ADELPHI MD 20783-1145

PRIN DPTY FOR TCHNLGY HQ
US ARMY MATCOM
AMCDCGT
MFISETTE
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTYCGFORRDEHQ
US ARMY MATCOM
AMCRD
BGBEAUCHAMP
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DIRECTOR
US ARMY RESEARCH LAB
AMSRLCSALTA
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
US ARMY RESEARCH LAB
AMSRLCILL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DIRUSARL
AMSRLCILP(305)

19

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

USAE WATERWAYS
EXPERIMENT STATION
CEWES HV C
JP HOLLAND
3909 HALLS FERRY ROAD
VICKSBURG MS 39180-6199

DIRUSARL
AMSRLPSE
B S PERLMAN
FORT MONMOUTH NJ 07703

NCCOSC
RDT&E DIVISION NRaD
CODE 404
RAWASILAUSKY
53570 SILVERGATE AVE
SAN DIEGO CA 92152-5180

NCCOSC
RDT&E DIVISION NRaD
CODE7601T
KBROMLEY
5180 SILVERGATE AVE
SAN DIEGO CA 92152-5180

ARMY HIGH PERF COMPUTING RSRCH CTR
MBEHR
SUITE 101
1100 WASHINGTON AVE SOUTH
MINNEAPOLIS MN 55415

ARMY HIGH PERF COMPUTING RSRCH CTR
TTEZDUYAR
1200 WASHINGTON AVE SOUTH
MINNEAPOLIS MN 55415

ARMY HIGH PERF COMPUTING RSRCH CTR
B BRYAN
1200 WASHINGTON AVE SOUTH
MINNEAPOLIS MN 55415

ARMY HIGH PERF COMPUTING RSRCH CTR
GVCANDLER
1200 WASHINGTON AVE SOUTH
MINNEAPOLIS MN 55415

ARMY AEROFLIGHT DYNAMICS DIR
RMEAKIN
M/S 258-1
MOFFETT FIELD CA 94035-1000

WL/FIMC BLDG 450
SSCHERR
2645 FIFTH ST SUITE 7
WPAFB OH 45433-7913

COMMANDER
CODEC2892
CHOUSH
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555

NAVAL SURFACE WARFARE CENTER
CODE B44
ABWARDLAW
SILVER SPRING MD 20903-5640

NAVAL RESEARCH LAB
CODE 6400
J BORIS
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

NAVAL RESEARCH LAB
CODE 6410
RRAMAMURTI
WASHINGTON DC 20375-5344

NAVAL RESEARCH LAB
HEAD OCEAN DYNAMICS AND
PREDICTION BR
CODE 7320
JW MCCAFFREY JR
STENNIS SPACE CENTER MS 39529

WL/FIMC BLDG 450
B STRANG
2645 FIFTH ST SUITE 7
WRIGHT-PATTERSON AIR FORCE BASE OH
45433-7913

WL/FIM
JJSSHANG
2645 FIFTH STREET STE 6
WRIGHT-PATTERSON AIR FORCE BASE OH
45433-7912

US AIR FORCE PHILIPS LAB
OLACPL/RKFE
CPTSGWIERSCHKE
10 EAST SATURN BLVD
EDWARDS AIR FORCE BASE CA
93524-7680

20

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

US AIR FORCE ROME LAB
RL/OCTS
RWLINDERMAN
GRIFFISS AIR FORCE BASE NY
13441-5700

PROJECT MANAGER CHSSI
RFOSTER
1110NGLEVEROAD
SUITE 650
ARLINGTON VA 22201

DIRECTOR
DEPT OF ASTRONOMY
356 PHYSICS BLDG
116 CHURCH STREET SE
MINNEAPOLIS MN 55455

ABERDEEN PROVING GROUND

14 DIRUSARL
AMSRLCIHA

CNIETUBICZ
WSTUREK

AMSRLCIHC
DPRESSEL
J COLLINS
DHISLEY
CZOLTANI
J GROSH
APRESSLEY
TKENDALL
PDYKSTRA

AMSRLWMBC
HEDGE
JSAHU
KHEAVEY
P WEINACHT

21

INTENTIONALLY LEFT BLANK.

22

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting bunten for this collection of Information is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, Including suggestions tor reducing this burden, to Washington Headquarters Sendees, Directorate for Information Operations and Reports, 1216 Jefferson
PevH Hlcmwsv. SuH. HO«. Arlington. VA »*»■««» ,md to rh. Ml« of M.nm.M .nd B„<»,.. P^rvyrt. Reduction ProktttlOTfrMHMt. Washington. DC M6W.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE | 3. REPORT TYPE AND DATES COVERED

December 1997 Final, Jan 95-Dec 96
4. TITLE AND SUBTITLE

Early Results From the Porting of the Computational Fluid Dynamics Code, F3D,
to the Silicon Graphics Power Challenge

6.AUTHOR(S)

Daniel M. Pressel

5. FUNDING NUMBERS

61110ZH4800

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-1562

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Wax/mum 200 words)

This report briefly discusses some of the issues involved in porting a computationally intensive code from a Cray
vector supercomputer to the Silicon Graphics (SGI) Power Challenge (75-MHz Mips R8000-based shared memory
Symmetric Multiprocessor). Additionally, some evidence is presented to indicate that similar results should be expected
when taking this code to comparable boxes from other vendors (e.g., Digital Equipment, Convex, HP, or SUN).
Performance results are also discussed. This discussion deals with both the highly successful nature of these results in
terms of absolute levels of performance and the even more impressive results in terms of cost-effective performance.
This report concludes with some thoughts on the future of this project

14. SUBJECT TERMS

computational fluid dynamics, super computing, high performance computing

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

26
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 23

Standard Form 298 (Rev. 2-89)
Prescribed by ANS! Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

24

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-1562 Date of Report December 1997

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will
be used.) '

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old
or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

